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Abstract

In long coronavirus disease 2019 (long COVID‐19), involvement of the musculo-

skeletal system is characterised by the persistence or appearance of symptoms such

as fatigue, muscle weakness, myalgia, and decline in physical and functional per-

formance, even at 4 weeks after the onset of acute symptoms of COVID‐19. Muscle

injury biomarkers are altered during the acute phase of the disease. The cellular

damage and hyperinflammatory state induced by severe acute respiratory syn-

drome coronavirus 2 (SARS‐CoV‐2) infection may contribute to the persistence of

symptoms, hypoxaemia, mitochondrial damage, and dysregulation of the renin‐
angiotensin system. In addition, the occurrence of cerebrovascular diseases,

involvement of the peripheral nervous system, and harmful effects of hospital-

isation, such as the use of drugs, immobility, and weakness acquired in the intensive

care unit, all aggravate muscle damage. Here, we review the multifactorial mecha-

nisms of muscle tissue injury, aggravating conditions, and associated sequelae in

long COVID‐19.
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1 | INTRODUCTION

Patients with coronavirus disease 2019 (COVID‐19) may have various

signs and symptoms that linger or appear even after 4 weeks of

symptom onset,1–3 including mild and asymptomatic infections.4

Therefore, this condition has been called long COVID‐19 and clas-

sified into two categories: (a) sub‐acute symptomatic or continuous

COVID, indicating symptoms lasting between 4 and 12 weeks; and (b)

post‐ or post‐chronic COVID syndrome, with the persistence of

symptoms beyond 12 weeks.5 Symptoms are related to complications

Abbreviations: ACE, angiotensin‐converting enzyme; Acetyl‐CoA, acetyl coenzyme A; Ang I, angiotensin I; Ang II, angiotensin II; ATP, adenosine triphosphate; ATR1, angiotensin type 1

receptor; CFS, chronic fatigue syndrome; CK, creatine kinase; CNS, central nervous system; CO2, carbon dioxide; COVID‐19, coronavirus disease; CRP, C‐reactive protein; DNA,

deoxyribonucleic acid; GBS, Guillain‐Barré syndrome; GCs, glucocorticoids; HIF‐1α, hypoxia‐induced factor 1 alpha; HIF‐2α, hypoxia‐induced factor 2 alpha; LDH, lactate dehydrogenase; ME,

myalgic encephalomyelitis; MHC, major histocompatibility complex; mTORC1, mammalian target of rapamycin complex 1; NF‐κβ, nuclear factor‐kappa beta; NK, natural killer cells; NMBAs,

neuromuscular blocking agents; ICU, intensive care unit; IFN‐γ, interferon‐gamma; IGF‐1, type 1 insulin‐like growth factor; IL, interleukin; IMV, invasive mechanical ventilation; PNS,

peripheral nervous system; RAS, renin‐angiotensin system; RNA, ribonucleic acid; ROS, reactive oxygen species; SARS, severe acute respiratory syndrome; SARS‐CoV, severe acute

respiratory syndrome coronavirus; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; SPPB, short physical performance battery; TCD4+, helper T cells; TCD8+, cytotoxic T

cells; TMPRSS2, transmembrane serine protease 2; TNF‐α, tumour necrosis factor‐alpha; T2DM, type 2 diabetes mellitus.

Juarez Antônio Simões Quaresma and Luiz Fábio Magno Falcão have contributed equally to this work.

Rev Med Virol. 2022;e2355. wileyonlinelibrary.com/journal/rmv © 2022 John Wiley & Sons Ltd. - 1 of 14

https://doi.org/10.1002/rmv.2355

https://doi.org/10.1002/rmv.2355
https://orcid.org/0000-0002-4444-2770
https://orcid.org/0000-0002-2995-0136
https://orcid.org/0000-0001-6735-4004
https://orcid.org/0000-0003-0300-7972
https://orcid.org/0000-0001-7428-7030
https://orcid.org/0000-0002-6267-9966
https://orcid.org/0000-0001-8391-2694
mailto:fabiofalcao@uepa.br
https://orcid.org/0000-0002-4444-2770
https://orcid.org/0000-0002-2995-0136
https://orcid.org/0000-0001-6735-4004
https://orcid.org/0000-0003-0300-7972
https://orcid.org/0000-0001-7428-7030
https://orcid.org/0000-0002-6267-9966
https://orcid.org/0000-0001-8391-2694
http://wileyonlinelibrary.com/journal/rmv
https://doi.org/10.1002/rmv.2355
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frmv.2355&domain=pdf&date_stamp=2022-04-13


from various organs and systems, including haematologic (vascular

haemostasis and coagulopathy), pulmonary (pulmonary thromboem-

bolism, pneumonia, and pulmonary fibrosis), cardiovascular (athero-

sclerosis, focal myocardial fibrosis, and acute myocardial infarction),

dermatological (psoriasis and lupus), neurological (ischaemic and

haemorrhagic stroke), and psychiatric disorders (depression and

anxiety).6 Therefore, symptom permanence is highly heterogeneous,

with more than 50 types of sequelae reported in the literature,7

including dyspnoea and chest pain,8,9 headache, anosmia, amnesia,10

cardiac arrhythmia,11 alopecia,12 insomnia, dementia,13 and different

muscle symptoms.

In long COVID‐19, the involvement of the musculoskeletal sys-

tem has been evidenced by the persistence of symptoms such as

fatigue,14 muscle weakness,15 myalgia,16,17 and a decline in physical

and functional performance.18 Muscle cell damage and the hyper-

inflammatory state induced by severe acute respiratory syndrome

coronavirus 2 (SARS‐CoV‐2) infection,19 hypoxaemia, mitochondrial

damage,20 and the dysregulation of the renin‐angiotensin system

(RAS)21 may also contribute to the persistence of symptoms. In

addition, the occurrence of cerebrovascular diseases and neuropa-

thies,22,23 negative effects of hospitalisation, such as the use of drugs,

immobility during long hospital stays, and weakness acquired in the

intensive care unit (ICU), all aggravate muscle sequelae.19,24,25 These

pathological mechanisms likely establish a persistent muscle

dysfunction, initiated in the acute phase of the disease and charac-

terised mainly by the reduction in muscle protein synthesis, resulting

in a decrease in muscle mass associated with a state of frailty, leading

to loss of autonomy and functionality in activities of daily living in a

patient with long COVID‐19.8,26–28

Understanding the pathogenesis of muscle dysfunction in long‐
term COVID‐19 can certainly support new studies and muscle

management protocols in patients with sequelae associated with

COVID‐19. Therefore, in this review, we address the involvement of

the skeletal muscles in long COVID‐19, highlighting the mechanisms

of tissue damage and associated sequelae.

2 | PATHOPHYSIOLOGY OF MUSCLE DAMAGE

SARS‐CoV‐2 infection seems to induce a set of mechanisms that can

directly affect the skeletal muscle or worsen muscle injury, estab-

lishing effects to muscle tissue characterised as: primary, with

possible infection of the muscle cell, leading to cell death and tissue

damage; secondary, resulting from damage to other systems, such as

the respiratory system (infection of lung cells, causing local inflam-

mation, generating diffuse alveolar damage, hypoxaemia, and

consequently, damage to muscle metabolism), neurological system

(infection of endothelial cells in the central nervous system [CNS],

resulting in hypercoagulation and vasoconstriction, favouring the

occurrence of cerebrovascular diseases) and the renin‐angiotensin

system (with a decrease in angiotensin‐converting enzyme 2

[ACE2] activity, favouring the expression of inflammatory pathways,

muscle atrophy, and fibrosis); tertiary, caused by the cytokine storm

(that can induce myopathy and peripheral neuropathy); and quater-

nary, such as the negative effects of immobility (progressive loss of

muscle mass) and hospitalisation (damage of long periods of immo-

bilisation, mechanical ventilation, myopathies and neuropathies

resulting from the use of drugs). In addition, these mechanisms lead

to muscle dysfunction, characterised by decreased protein synthesis

and increased protein degradation, increased oxidative stress, myo-

nuclear apoptosis, and mitochondrial dysfunction (Figure 1).

2.1 | Muscle cell damage

It is known that the entry of SARS‐CoV‐2 into the host cell is enabled

by angiotensin‐converting enzyme 2 (ACE2) and potentiated by

transmembrane serine protease 2 (TMPRSS2).29,30 The literature has

well documented that musculoskeletal tissue express ACE2 and

TMPRSS2.26,31–33 Therefore, the muscles are susceptible to infection

and direct injury by SARS‐CoV‐2. It is likely that once bound to

ACE2, the virus enters the muscle cell through endocytosis.34,35 In

the endosomal environment, viral proteins are cleaved and activated

by TMPRSS2, resulting in the fusion of the viral and cell membranes,

causing the release of viral ribonucleic acid (RNA) in the cyto-

plasm.36,37 Inside the muscle cell, the virus uses the cellular ma-

chinery for replication, down‐regulating cellular activities, thus,

inducing muscle cell death and injury.38

2.2 | Lung injury aggravating muscle damage

The literature shows that patients with COVID‐19 can develop acute

respiratory distress syndrome, characterised by severe hypoxaemia

and the need for oxygen therapy and ventilatory support.39,40 This is

because the local immune response in the lungs results in diffuse

alveolar damage and consequent accumulation of inflammatory

exudate, fibrin deposition, hyaline membrane formation, alveolar

epithelial desquamation, granulation tissue formation, collagen

deposition, and decreased alveolar‐capillary permeability, compro-

mising gas exchange.41–44 Hypoxaemia is characterised by a deficit of

oxygen in the blood, thereby impairing the oxygen supply to the

muscle tissue (hypoxia), compromising biological functions.45 In vivo

studies have demonstrated that hypoxia inhibits muscle protein

synthesis and increases degradation, with protein synthesis inhibition

being the main mechanism associated with muscle mass reduc-

tion.46,47 This is because hypoxia can significantly affect mitochon-

drial activity, impairing muscle energy generation through oxidative

phosphorylation, where oxygen is required as an electron‐terminal

receptor, resulting in a decrease in adenosine triphosphate (ATP),

which is required for protein synthesis and muscle contraction.48–50

Hypoxaemia caused by lung injury in COVID‐19 impairs oxida-

tive phosphorylation. Thus, some adaptations occur in tissues to in-

crease oxygen delivery, including induction of erythropoiesis and

angiogenesis. These changes are regulated by the hypoxia‐induced

factors 1 and 2 alpha (HIF‐1α and HIF‐2α). These transcription
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factors that coordinate adaptive cellular responses in hypoxic envi-

ronments then become highly expressed. In addition, HIF‐1α in-

tensifies glycolysis, up‐regulating genes that amplify and transport

glucose into cells, thus, increasing energy availability.51 However,

chronic stabilisation of HIF‐1α results in maladaptive and deleterious

effects on musculature and increases the expression of profibrotic

cytokines.52 In contrast, hypoxia triggers metabolic reprogramming

to regulate cell functions.49 The energy generation process remains

F I GUR E 1 Pathogenesis of muscle dysfunction caused by SARS‐CoV‐2. 1: SARS‐CoV‐2 infects the muscle cell and uses cell machinery for
replication, resulting in cell death and tissue damage. 2: SARS‐CoV‐2 infects lung cells, causing a local inflammatory response, diffuse alveolar
damage, and hypoxaemia, interfering with myogenesis and myogenic differentiation and muscle metabolism and energy production. 3: SARS‐
CoV‐2 infection of endothelial cells results in inflammation, hypercoagulation, and vasoconstriction, leading to neurotoxicity and cell death. 4:
The binding of SARS‐CoV‐2 to angiotensin‐converting enzyme 2 (ACE2) negatively regulates the activity of the enzyme, favouring the high
expression of angiotensin II (Ang2) and its receptor, angiotensin type 1 receptor (ATR1), leading to muscle atrophy and fibrosis. 5: The

exacerbation of inflammation in the lungs increases inflammatory mediators, which are transported by the blood to other organs and systems.
In the muscle, inflammatory cytokines increased muscle proteolysis and decreased protein synthesis. In the peripheral nervous system,
antibodies attack nerves, causing damage to the axon or myelin. 6: Hospitalisation due to COVID‐19 can cause muscle damage due to the use

of drugs and sedatives, as well as mechanical ventilation and immobility. 1, 2, 3, 4, 5, and 6 lead to muscle dysfunction, characterised by
decreased synthesis and increased protein degradation, increased oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction. This
figure was created with Biorender.com
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at a smaller scale and is insufficient for functions that require large

amounts of ATP, such as protein synthesis and muscle contraction.

This process refers to anaerobic glycolysis, where cytosolic pyruvate

is converted into lactate by the enzyme lactate dehydrogenase

(LDH), favouring the maintenance of the inflammatory process due to

excess lactate.53 Additionally, hypoxia represses myogenesis and

myogenic differentiation through mechanisms, such as the activation

of the Notch signalling pathway, inhibition of the phosphoinositide 3‐
kinase pathway, and degradation of several basic myogenic regula-

tory factors, such as those of the helix‐loop‐helix family, including

Myf5, Myf6, MyoD, and Myog.54,55

The low oxygen supply to skeletal musculature and its conse-

quences on energy generation observed in the acute phase of COVID‐
19 seem to extend to the period after infection. In long COVID‐19, the

impairment of ATP generation in mitochondria has been evidenced by

a marked reduction in peak peripheral oxygen consumption56 and

oxygen extraction by peripheral muscles at rest and during exercise,

causing exercise intolerance in patients with the disease.57

2.3 | Cerebrovascular and peripheral nervous
system injury

The mechanisms of SARS‐CoV‐2 invasion in the CNS involve the

haematogenous route, which involves the binding of the virus to

endothelial cells of the blood‐brain barrier, infection of immune cells,

olfactory sensory neurons, and the liquor route, where infected

lymphocytes attach to endothelial cells present in the cerebrospinal

fluid, reaching neurons and glial cells.41,58,59 Camargo‐Martínez

et al.22 reported that CNS involvement is the main form of neuro-

logical injury during COVID‐19. In addition, patients with more se-

vere conditions had higher levels of D‐dimer, being more predisposed

to developing cerebrovascular disease.

Some studies have observed a relationship between COVID‐19

and cerebrovascular complications, with reports of ischaemic and

haemorrhagic stroke.60–62 Ischaemic stroke appears to be the most

frequent cerebrovascular complication of COVID‐19.63 COVID‐19

and its etiological association with a stroke can be explained by the

occurrence of coagulopathy due to endothelial inflammation or the

displacement of pre‐existing atheromatous plaque.64,65 In this case,

the virus binds to ACE2 on endothelial cells, depleting these receptors

and increasing angiotensin II (Ang II) levels in the blood. Elevated Ang II

levels mainly result in (1) inflammation, leading to clot formation and

potential ischaemic stroke and (2) vasoconstriction and fluid retention,

with increased blood pressure and potential haemorrhagic stroke.66

The involvement of the peripheral nervous system (PNS) is char-

acterised by neural damage, neuromuscular junction dysfunction,

myopathy, and polyneuropathy.19,35,67 The cytokine storm causes

microvascular disarray, and metabolic and electrical changes, attract-

ing pathogenic inflammatory cells or mediating neurotoxicity and cell

death.68 Furthermore, it favours hypoxic conditions, which reduce

axonal survival factors or increase vascular permeability, causing

vasogenic oedema.19

The appearance of Guillain‐Barré syndrome (GBS) associated

with COVID‐19 exemplifies the cytokine storm‐mediated PNS

aggression.69,70 Unlike the classic forms associated with other viral

infections, characterised by a post‐infectious onset with direct nerve

root involvement, GBS associated with SARS‐CoV‐2 infection de-

velops rapidly within a few days of the onset of viral infection. Nerve

root damage is not always explicit on magnetic resonance imaging

(MRI), indicating that nerve damage may be included in systemic,

acute, and severe dysimmune processes associated with the gener-

alised clinical manifestations of COVID‐19.23 In GBS, the patient has

flaccid paralysis, characterised by intense muscle weakness of the

lower limbs and loss of deep reflexes and sensory damage.23,71

Cerebrovascular and PNS injuries, which can occur in the acute

phase of COVID‐19, can generate musculoskeletal sequelae in most

patients, aggravating persistent symptoms observed in long COVID‐
19 (Figure 2). For example, stroke survivors can show severe muscle

loss (up to 24% in muscle volume72), which is accompanied by sig-

nificant degradations in fibre type and size distribution and capillary

density. However, patients who develop GBS may have severe

muscle weakness. Additionally, the literature suggests that recovered

patients may remain with latent SARS‐CoV‐2 in the CNS for a long

time, which may reactivate and trigger neurological complications

observed in long COVID‐19.22

2.4 | Dysregulated renin‐angiotensin system (RAS)

Furthermore, when SARS‐CoV‐2 invades a cell, it downregulates

ACE2 expression and induces a soluble form in the serum, decreasing

ACE2 activity. These processes can increase the activation of the

classical RAS and decrease the expression of the non‐classical

one.21,73 RAS is a modulator of muscle mass, and its dysregulation

can directly affect skeletal muscle mass and function.21 Over-

activation of the classic RAS pathway has been associated with

harmful consequences in the skeletal muscle, such as muscle atrophy

and fibrosis, because it can generate a cascade of events in muscle

tissue, including increased production of reactive oxygen species

(ROS), protein degradation, and decreased protein synthesis.74,75 In

contrast, the decrease in non‐classical RAS expression inhibits the

protective and maintenance factors of muscle tissue, as its activation

is related to the antifibrotic and antiatrophic effects on skeletal

muscle.76

2.5 | Hyperinflammatory state in the muscle

In most patients infected with SARS‐CoV‐2, the innate immune

response, mediated by the expression of type I interferons that act as

signallers of viral infection, recruiting monocytes, macrophages, and

dendritic cells, which promote the release of cytokines in response to

infection,77,78 and the adaptive response via T and B cells, are sufficient

to contain the infection, and the patient recovers.38 However, there is

an atypical and insufficient immune response in some patients,
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aggravated by the escape of SARS‐CoV‐2 from the immune

response,79 favouring the increase in viral replication and exacerbating

inflammation. This results in the production of cytokines and chemo-

kines such as interleukin (IL) 2, IL‐6, IL‐10, interferon‐gamma (IFN‐γ),

and tumour necrosis factor‐alpha (TNF‐α), which recruit other immune

cells, mainly monocytes and T lymphocytes, to the site of infection.43,80

Activated immune cells express additional cytokines, causing the

recruitment of new immune cells, establishing a pro‐inflammatory

cycle that results in a cytokine storm, resulting in damage to multiple

organs and tissues, including muscle tissue.81,82 Helper T cells (TCD4+)

and cytotoxic T cells (TCD8+) are essential for combating SARS‐CoV‐2
and the emergence of autoimmune damage. TCD4+ acts in the pro-

duction of specific antibodies, cytokines, and interleukins and co-

ordinates the activities of TCD8+. TCD8+ directly eliminates the virus

but can be cytotoxic and destroy infected cells.41,78

The pathological increase in IL‐1β, IL‐6, and circulating TNF‐α
levels are strongly linked to a loss of muscle mass.83 IL‐6 participates

in pro‐inflammatory processes and regulates immune functions and

body metabolism during pathological conditions.84 Furthermore, it is

involved in important autocrine and paracrine signals, controlling

myocyte proliferation and differentiation.85,86 The chronicity of high

IL‐6 levels is associated with the acceleration of muscle mass loss and

damage to metabolic homoeostasis in muscle, in addition to wors-

ening the inflammatory condition, contributing to the severity of

comorbidities.83,87,88 IL‐1β and TNF‐α are expressed in the muscle

and inflammatory cell infiltrates of all inflammatory myopathies.89

IL‐1β and IL‐6 can induce increased muscle fibroblast activity.87

IL‐1β and TNF‐α inhibit the differentiation and proliferation of sat-

ellite cells, the progenitor cells involved in muscle fibre growth.17 In

vivo studies have demonstrated that the administration of IL‐1β and

F I GUR E 2 Cerebrovascular complications and neural damage caused by SARS‐CoV‐2 infection and its inflammatory response.
Cerebrovascular complications caused by SARS‐CoV‐2: the virus binds to angiotensin‐converting enzyme 2 (ACE2) of endothelial cells,
depleting these receptors and increasing the levels of angiotensin II (Ang II) in the blood. Elevated Ang II levels result in inflammation, leading

to clot formation and potential ischaemic stroke, vasoconstriction, and fluid retention, with increased blood pressure and potential
haemorrhagic stroke. In both events, the consequences include microvascular disarray, hypoxia, metabolic and electrical changes, and
vasogenic oedema, leading to neurotoxicity and cell death. The sequelae of cerebrovascular events involve severe muscle wasting, muscle

weakness, and hemiparesis. Peripheral nervous system damage: the intense inflammatory response resulting from a viral infection can induce
nerve destruction via an autoimmune response, characterised by damage to the axons and myelin sheath. As a result, dysfunction in the
neuromuscular junction, myopathies, and polyneuropathies can occur, such as Guillain‐Barré syndrome, generating flaccid paralysis with

severe loss of muscle mass and sensory damage. This figure was created with Biorender.com
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TNF‐α significantly reduces the synthesis of major muscle pro-

teins.90,91 TNF‐α appears to interfere with skeletal muscle contrac-

tility and promote muscle weakness.92 In vitro studies have reported

that TNF‐α inhibits myogenesis and deregulates nuclear factor‐kappa

beta (NF‐κβ), a key transcription factor in skeletal muscle atrophy.93,94

Thus, the action of these inflammatory cytokines can decrease muscle

mass and, consequently, muscle strength and endurance.95

In addition to the direct damage that inflammation can cause in

skeletal muscle tissue96 during the acute phase of the disease, it fa-

cilitates the appearance of sequelae. Studies10,60,97 have shown that

SARS‐CoV‐2 can remain detectable in survivors' bodies for up to

4 months after the acute phase, suggesting that the virus may induce

a delayed immune response and cause long COVID‐19.4

Aschman and colleagues98 evaluated the quadriceps and deltoid

tissues from patients who died of severe COVID‐19 and compared

them with samples from patients who died of other critical illnesses.

They found signs of degenerated muscle fibres more frequently in the

COVID‐19 group and lesions indicative of myositis, ranging from mild

to severe inflammation. In addition, they observed significant regula-

tion of major histocompatibility complex (MHC) class I and II antigens

in myofibres, indicating muscle involvement in the immune response

against SARS‐CoV‐2. Natural killer (NK) cells were also identified close

to myofibres, suggesting that they participated in the pathogenesis of

COVID‐19‐associated myositis. Furthermore, necrotic myofibres were

found, but this was not a specific finding in patients with COVID‐19,

suggesting that this is a consequence of sepsis or critical illness. Thus,

the high expression of cytokines such as IFN‐γ, IL‐1β, IL‐6, IL‐17, and

TNF‐α60 can directly damage the skeletal muscle, inducing fibre pro-

teolysis and decreasing protein synthesis19,22 (Figure 3).

Additionally, the mammalian target of rapamycin complex 1

(mTORC1) is one of the main regulators of muscle protein syn-

thesis. Its inhibition results in the dysregulation of mitochondrial

activity, characterised by decreased mitochondrial deoxyribonucleic

acid (DNA) production, reduced biogenesis, and increased

mitophagy.20,99 Inflammation resulting from SARS‐CoV‐2 infection

interacts with the mTORC1 pathway and impairs muscle protein

synthesis and mitochondrial activity.20 Furthermore, mitochondrial

damage can facilitate mitochondrial apoptosis, which interferes

with the generation of ATP in muscle cells (Figure 3). Thus,

mitochondrial function, a regulator of metabolic dysfunction in the

skeletal muscle, can be affected by inflammation and has great

potential to induce sarcopenia. This is because muscle mitochon-

dria, during inflammation, produce high concentrations of ROS and

are prone to autophagy.99–101

2.6 | Hospitalisation and muscle weakness

Many survivors of COVID‐19 have experienced prolonged hospital-

isation and immobilisation in the ICU because of severe respiratory

impairment that may require oxygen therapy, invasive mechanical

ventilation (IMV), or being placed in a prone position. In addition,

survivors of critical illnesses have significant skeletal muscle

dysfunction, characterised by weakness and atrophy, which result in

impaired physical function.27,102,103

Mayer et al.104 demonstrated that prolonged ICU stay is asso-

ciated with a rapid and significant reduction in the volume of the

rectus femoris muscle, at 18.5% on average, until the 7th day of

hospitalisation. Furthermore, through ultrasound analysis, they

observed a correlation between the size of the rectus femoris and

muscle strength and function. The decrease in the density of type II

muscle fibres, which are essential in energy generation, seems to be

the reason for the changes in muscle strength. Muscle biopsies of

patients who require IMV show that type II fibres have a smaller

muscle cross‐sectional area and decreased in greater proportion than

type I fibres.

Additionally, pathological agents such as viruses can induce the

appearance of systemic inflammatory response syndrome, charac-

terised by the activation of cellular and humoural responses. Ob-

servations in muscle biopsies include local immune activation

constituted by small grouped infiltrates or isolated inflammatory

cells, mainly composed of macrophages and TCD4+ that produce

changes in the body's microcirculation.105 Inflammatory mediators

such as IL‐1, IL‐2, IL‐6, and TNF‐α have also been observed in the

muscle and nervous tissue of patients with ICU‐acquired weak-

ness106–108 and mediate muscle damage, PNS degeneration/regen-

eration, and endothelial dysfunction. With the increase in vascular

permeability, endoneurial oedema impairs oxygen and energy supply

to the neurons, leading to cell death.106,109 This corroborates the

electrophysiological findings, which revealed a reduction in the

amplitude of muscle action potentials and sensory nerve action po-

tentials, conferring normal or slightly reduced conduction velocity.

Furthermore, these findings confirm primary distal axonal degener-

ation of motor and sensory fibres.107,110,111

In addition, pharmacological agents such as glucocorticoids (GCs)

have also been used as a therapeutic intervention for COVID‐19 to

modulate lung damage resulting from inflammation and prevent the

development of respiratory failure.112,113 However, some aspects of

this therapy, such as its dosage and duration of use, need further

clarification. In general, the prolonged use of GCs causes damage to

the skeletal muscles, such as damage to catabolic mechanisms that

deregulate proteolytic systems, including ubiquitin‐proteasome,

calcium‐dependent cathepsins, and calpains, resulting in the

increased proteolysis of myofibrillar proteins, leading to the dissoci-

ation between actin and myosin.24,114,115 Prolonged GCs use also

damages anti‐anabolic mechanisms, inhibits amino acid transport and

muscle type 1 insulin‐like growth factor (IGF‐1) production, blocks

the transcription factor myogenin, and inhibits protein synthesis and

myogenesis.116 It also induces myocyte apoptosis, reduces serum

potassium and phosphate levels, creates a deficit in glycolytic activity,

and decreases the expression of calcium ATPase in the sarcoplasmic

reticulum, a crucial element in calcium kinetics during muscle relax-

ation after contraction.114

Deep sedation allows for the implementation of IMV; however, it

results in the impairment of cardiopulmonary independence and a

state of absolute immobility, which has negative effects on the
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skeletal musculature.117,118 Therefore, when sedation is not enough

to ensure adequate IMV, neuromuscular blocking agents (NMBAs)

are used, favouring patient‐ventilator synchrony. However, NMBAs

block the nicotinic acetylcholine receptor in the muscle cell mem-

brane, interrupting the transmission of impulses at the neuromus-

cular junction. Thus, the persistence of neuromuscular blockade,

influenced by the plasma concentration of the agent and its metab-

olite, leads to prolonged paralysis, myopathy, and generalised muscle

weakness.119–121

Thus, the causes of muscle weakness acquired in the ICU are

multifactorial, including pharmacological agents, immobility, and

IMV, and associated with prolonged hospitalisation and increased

mortality. In addition, affected patients experience limb weakness

and atrophy, absence of deep tendon reflexes, sensory loss,

changes in muscle contractility, and consequent functional

sequelae, such as the loss of muscle strength and endurance,

myalgia, fatigue, and reduced aerobic capacity and physical

performance.122,123

3 | MUSCLE SEQUELAE IN LONG COVID‐19

3.1 | Muscle injury biomarkers and symptoms

Patients with muscle damage from COVID‐19 have significantly

elevated creatine kinase (CK) levels, regardless of disease severity. In

addition, they had higher levels of C‐reactive protein (CRP), lactate

dehydrogenase (LDH), cortisol, and ferritin.60

CK plays an important role in ATP hydrolysis and is normally found

in tissues that require high energy levels, such as muscles, and is a

marker of muscle damage.124,125 The elevation in serum CK levels seen

in patients with COVID‐19 is likely a result of skeletal myopathy.98

Elevated CRP levels are associated with sarcopenia and an increased

risk of muscle weakness. It was observed that CRP levels are signifi-

cantly higher in patients with sarcopenia and are associated with

muscle weakness and reduced physical activity.126–128 The increased

expression of LDH in patients with COVID‐19 signals a state of fatigue,

which may indicate increased anaerobic metabolism in the muscle with

F I GUR E 3 Hyperinflammatory state induces mitochondrial damage and myopathy in long COVID‐19. 1: Inflammatory mediators carried
by the bloodstream reach the muscle tissue. 2: Interferon‐gamma (IFN‐γ), interleukin 1 beta (IL‐1β), interleukin 6 (IL‐6), interleukin 17 (IL‐17),
and tumour necrosis factor‐alpha (TNF‐α) are at increased levels. 3: Cytokines induce increased proteolysis of muscle fibre and muscle
fibroblasts, decreased protein synthesis, differentiation, and proliferation of satellite cells, and decreased myogenesis and dysregulation of

nuclear factor‐kappa beta (NF‐Kβ). Muscle injury is characterised by increased infiltrating natural killer (NK) cells, major histocompatibility
complex (MHC) class I and II antigens, and necrotic fibres. In addition, the increase in muscle cytokine levels inhibits the activity of the
mammalian target of rapamycin complex 1 (mTORC1), resulting in mitochondrial damage, impairing the production of adenosine triphosphate

(ATP). 4: The occurrence of symptoms such as muscle weakness, fatigue, myalgia, and the decline in physical performance are consequences of
muscle atrophy resulting from tissue damage. This figure was created with Biorender.com
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insufficient production of ATP, as LDH catalyses the interconversion of

pyruvate into lactate.129 The hypercortisolaemia observed in patients

with COVID‐19130 may also indicate muscle damage, as cortisol is a

mediator of protein catabolism. During acute illness, its levels increase

significantly in the blood, leading to the loss of muscle mass and

strength.131 The high concentrations of ferritin found in patients with

COVID‐19132 may increase the chances of muscle cell damage and

death since ferritin is an iron storage protein that can directly interact

with energy production in mitochondria,133 stimulate anaerobic modes

of energy production and increase the production of ROS.27

High levels of CK, CRP, LDH, cortisol, and ferritin reinforce the

indication of muscle damage that begins in the acute phase of

COVID‐19 and extend into long COVID‐19, as persistent muscle

symptoms have been reported. Fatigue is the most recurrent

sequela,4 with a prevalence between 53% and 94.9%, and may be

accompanied by myalgia, muscle weakness, and reduced physical

performance.8,14–18

Muscle dysfunction results from multiple mechanisms and can

lead to functional changes, including decreased muscle strength

and endurance27,134; structural changes, which include a decline in

muscle mass, an increase in the percentage of type II fibres, a

reduction in the number of capillaries, and changes in bio-

energetics, such as mitochondrial dysfunction and the production

of oxygen‐free radicals.99,135 Bioenergetic changes affect the

quality and quantity of the muscle mass. The loss of muscle mass

alters the proper functioning of the body and is associated with

other negative consequences, such as loss of strength and physical

performance.20 Thus, the reduction in muscle mass is crucial for a

state of frailty, leading to loss of autonomy and functionality in the

daily living activities of patients with long COVID‐19.8,36,106

Paneroni et al.134 evaluated the skeletal muscle strength of

the quadriceps and biceps femoris of patients who recovered

from COVID‐19 at the time of hospital discharge and did not

have previous musculoskeletal deficiencies through a test of

maximum voluntary contraction and physical performance using

the short physical performance battery (SPPB). They found that 86%

of patients had muscle weakness in the quadriceps and 73% in

the biceps femoris. Regarding the SPPB, 53% of the patients had

scores above 10, indicating ‘good’ physical performance. However,

25% had scores below five, indicating low physical autonomy.

These findings demonstrate that muscle dysfunction in patients

with long COVID‐19 is highly likely.

3.2 | Sarcopenia in long COVID‐19

Sarcopenia may be relevant to the functional and physical deterio-

ration in long COVID‐19, induced by multiple factors. For example,

the negative effects of immobility are well documented.28,43

Arentson‐Lantz et al.136 observed that 14 days of rest resulted in a

reduction in the cross‐sectional area of muscle fibres, with a pref-

erence for type IIa fibres, and a decrease in the number of satellite

cells. Kilroe et al.137 reported that in just 2 days of immobilisation, up

to 1.7% of muscle volume can be lost and that this loss can be greater

in 7 days, with a 5.5% reduction in muscle volume. In addition, the

muscle volume lost during inactivity can lead to a progressive loss of

muscle mass and function, as this tissue may not fully recover.23

Health conditions prior to infection and poor diet are also re-

ported as determinants of sarcopenia. They interact with mitochon-

drial regulation and dysregulation mechanisms, resulting in

mitochondrial dysfunction and autophagy, leading to decreased

muscle protein synthesis and increased muscle proteolysis.23,106 For

example, type 2 diabetes mellitus (T2DM) and obesity can exacerbate

anabolic resistance, which is responsible for muscle atrophy because

they increase the levels of inflammation and induce the dysregulation

of anabolic hormones.138

In the acute phase of COVID‐19, anosmia and ageusia are

prevalent symptoms; even 1 month after infection, up to 30% and

20% of olfactory and taste dysfunction, respectively, still do not

improve.139 Xerostomia and dysphagia have also been reported with

a decrease in masticatory muscle strength.140 This spectrum of dys-

functions can lead to inadequate nutrition, with reduced intake of

important nutrients for increasing and protecting muscle mass, such

as essential amino acids, vitamins, macro and microelements, dietary

fibre, and hydration.27 For example, low protein consumption can

decrease the hypertrophic response of the muscle.20

3.3 | Chronic fatigue syndrome

In many patients, the persistence of symptoms observed in long

COVID‐19 is centred on fatigue,16 accompanied by cognitive deficits,

pain, and dyspnoea,8 and persist for several months after infection.15

These symptoms are similar to myalgic encephalomyelitis/chronic

fatigue syndrome (ME/CFS), a well‐documented post‐viral disease in

the literature characterised by severe fatigue after exertion that does

not improve with rest, lasting for periods longer than 6 months. It is

believed that with the high incidence and prevalence of SARS‐CoV‐2
infections, a significant increase in ME/CFS cases may occur because

of the post‐viral fatigue, symptomatically identical to ME/CFS,

observed in patients who recover from COVID‐19.141 In infections by

other coronaviruses such as SARS‐CoV, the same reports of a post‐
viral syndrome include chronic fatigue, diffuse myalgia, depression,

and sleep disturbances, which affect survivors for up to 4 years.4,142

Perrin et al.143 suggested that patients with long COVID‐19 may

have a ‘post‐COVID‐19 syndrome’, similar to SARS.

3.4 | Weakness and respiratory conditions

Patients with long COVID‐19 develop intolerance to physical exercise,

mainly caused by persistent dyspnoea and fatigue.20 These symptoms

are likely due to the complex interaction between ventilatory limita-

tion, skeletal muscle dysfunction, and cardiac dysfunction.

Pulmonary ventilation is directly affected by the activity of res-

piratory muscles, especially the diaphragm.144 Thus, we infer that the

8 of 14 - SILVA ET AL.



muscle injury caused by COVID‐19 is an important factor in exercise

intolerance found in long COVID‐19 since it causes a reduction in

muscle mass, decreasing the strength and resistance of the respira-

tory muscles, and impairing the movement of the diaphragm. This

reduces vital lung capacity, resulting in difficulty sustaining breathing

and causing discomfort.

The assessment of inspiratory and expiratory pressures in pa-

tients with SARS sequelae showed values below normal, suggesting

respiratory muscle weakness. This finding is considered the main

factor for restrictive pulmonary function.145 In this sense, it is likely

that when exposed to daily efforts, patients show an increase in

ventilatory demand, which forces them to avoid such activities; thus,

they are affected by a chronic sedentary lifestyle, leading to wors-

ening of muscle strength and aerobic capacity, emphasising the cycle

dyspnoea‐sedentary lifestyle‐dyspnoea.

3.5 | Muscle dysfunction in long‐term COVID‐19
and at‐risk populations

Some populations may have additional risk factors for developing

post‐COVID‐19 muscle sequelae. Among these, we highlight patients

with obesity, T2DM, and older adults because, prior to infection by

SARS‐CoV‐2, they are associated with muscle and functionality

impairment from structural and bioenergetic changes in the skeletal

muscle.

Patients with obesity may be at greater risk for developing

muscle sequelae because they are subjected to a low‐intensity

chronic inflammatory state, favoured by the secretion of different

inflammatory mediators by adipose tissue, such as TNF‐α, IL‐1, and

IL‐6. These inflammatory products are associated with muscle

wasting because they disrupt the balance between muscle protein

synthesis and breakdown. In addition, these patients are prone to

reduced lung ventilation due to limited chest expansion by the

accumulation of adipose tissue, which, associated with respiratory

muscle weakness, worsens oxygen supply and increases fatigue and

muscle weakness.146

In patients with T2DM, insulin resistance accelerates the loss of

muscle mass and strength because it can disrupt the balance between

muscle hypertrophy and atrophy, suppressing insulin or insulin‐like

growth factor 1 (IGF‐1) signalling, thereby deregulating several

processes that favour the increase of protein degradation and

decrease of protein synthesis. In addition, T2DM can reduce the

activity of the mitochondrial electron transport chain, impairing the

bioenergetic efficiency of the muscle.138 Additionally, patients with

diabetes may present metabolic changes that promote immune sys-

tem dysfunction, favouring the excessive production of pro‐
inflammatory cytokines such as TNF‐α and IL‐1β, which can induce

muscle dysfunction.146

Older adults may also be at greater risk of developing post‐
COVID‐19 muscle sequelae because ageing induces the decline of

several bodily functions, including changes in protein synthesis,

impaired neuromuscular function, and hormonal, metabolic, and

nutritional changes. These changes favour the loss of muscle mass,

characterised by myofibre atrophy (mainly type II) in older adults,

increased intramyocellular lipids and collagen, reduced mitochondrial

function and biogenesis, altered satellite cell function, and others.138

4 | CLINICAL MANAGEMENT OF MUSCLE
SEQUELAE IN LONG COVID‐19

In long COVID‐19, patients can present various symptoms in

different organs and systems. Therefore, we emphasise the impor-

tance of rehabilitation by an integrated multidisciplinary team

involved in the complete recovery of the patient's health and

improved quality of life.

When we focus on treating muscle sequelae, we can highlight

that loss of muscle mass presents itself as the main outcome of

muscle dysfunction induced by SARS‐CoV‐2 infection and is associ-

ated with several functional consequences such as muscle weakness,

myalgia, and decreased physical and functional performance. In this

context, physical training is a key factor in re‐establishing muscle

health and includes several strategies that depend on the limitations

manifested by the patient and the environment in which he is placed.

The procedures generally involve muscle strengthening, mobility

exercises, aerobic exercise, and inspiratory muscle training.147,148

Additionally, we highlight the importance of nutritional moni-

toring, aiming at adequate intake of essential nutrients to increase

and protect muscle mass, good functioning of the microbiota, and

assistance for the control of comorbidities such as T2DM and

obesity, which have a great impact on muscle dysfunction.20,149

Although the need for rehabilitation for patients with COVID‐19

sequelae is clear, the novelty of the viral infection and its constant

evolution requires more studies to measure the extent of the func-

tional deficiencies of these patients, evaluate the effects of rehabil-

itation, and recommend therapeutic approaches.148

5 | CONCLUSIONS

The muscle sequelae observed in long COVID‐19 are due to

persistent muscle dysfunction, starting at the acute phase of the

disease, mainly characterised by a reduction in muscle protein syn-

thesis due to the hyperinflammatory state, hypoxaemia, muscle cell

infection, and dysregulation of RAS. In addition, cerebrovascular

diseases resulting from COVID‐19, the involvement of the peripheral

nervous system, and harmful effects of hospitalisation aggravate

muscle damage. The decrease in the quantity and quality of muscle

mass is the main result of muscle dysfunction, causing fatigue and

muscle weakness that aggravate respiratory sequelae, resulting in

functional limitations, with a consequent reduction in quality of life

and the ability to perform daily activities. Understanding the

generalised fatigue and muscle weakness observed in patients with

long COVID‐19 is essential to guide future research to reduce the

current scarcity of studies that assess muscle dysfunction resulting
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from long COVID‐19, its sequelae, and the impacts on the lives of

survivors. Furthermore, studies that recommend evidence‐based

rehabilitation related to long‐term COVID‐19 are also needed.
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